Large Strain Mechanical Behavior of HSLA-100 Steel Over a Wide Range of Strain Rates

نویسندگان

  • Maen Alkhader
  • Laurence Bodelot
چکیده

High-strength low alloy steels (HSLA) have been designed to replace high-yield (HY) strength steels in naval applications involving impact loading as the latter, which contain more carbon, require complicated welding processes. The critical role of HSLA-100 steel requires achieving an accurate understanding of its behavior under dynamic loading. Accordingly, in this paper, we experimentally investigate its behavior, establish a model for its constitutive response at high-strain rates, and discuss its dynamic failure mode. The large strain and high-strain-rate mechanical constitutive behavior of high strength low alloy steel HSLA-100 is experimentally characterized over a wide range of strain rates, ranging from 10 3 s 1 to 10 s . The ability of HSLA-100 steel to store energy of cold work in adiabatic conditions is assessed through the direct measurement of the fraction of plastic energy converted into heat. The susceptibility of HSLA-100 steel to failure due to the formation and development of adiabatic shear bands (ASB) is investigated from two perspectives, the well-accepted failure strain criterion and the newly suggested plastic energy criterion [1]. Our experimental results show that HSLA-100 steel has apparent strain rate sensitivity at rates exceeding 3000 s 1 and has minimal ability to store energy of cold work at high deformation rate. In addition, both strain based and energy based failure criteria are effective in describing the propensity of HSLA-100 steel to dynamic failure (adiabatic shear band). Finally, we use the experimental results to determine constants for a Johnson-Cook model describing the constitutive response of HSLA-100. The implementation of this model in a commercial finite element code gives predictions capturing properly the observed experimental behavior. High-strain rate, thermomechanical processes, constitutive behavior, failure, finite elements, Kolsky bar, HSLA-100. [DOI: 10.1115/1.4005268]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction Between Precipitation and Dynamic Recrystallization in HSLA-100 Microalloyed Steel

Strain induced precipitation in HSLA-100 steel was investigated by conducting hotcompression and relaxation tests at temperature range of 850°C to 1100°C and strain rate of 0.001s-1 to 1s-1. The absence of dynamic recrystallization at temperatures below 1000°C was attributedto the influence of dynamic precipitation. The stress relaxation tests showed that strain inducedprecipitation is possible...

متن کامل

Mechanical Behavior of TWIP Steel in High Strain Rate Torsional Test

Advanced high strength steels (AHSS) have recently attracted great attention because of their superior mechanical properties. A modern group of these steels, known as twinning induced plasticity (TWIP) steels, shows a unique combination of strength and ductility even at high rates of strain. In order to examine the functionality of such steels in dynamic loading conditions, their mechanical beh...

متن کامل

Influence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels

In this work, dynamic mechanical properties of three high-manganese steels with TRIP/TWIP or fully TWIP characteristics are studied. High strain rate experiments in the range of true strain rates between ~500 and 1800 /s are conducted using a dynamic torsional testing setup. All the three steels show a positive strain rate sensitivity in the intermediate range of strain rates (up to 500 /s). Bu...

متن کامل

Shear and tensile plastic behavior of austenitic steel TRIP-120 compared with martensitic steel HSLA-100

Themechanical performanceofTRIP-120, a novel transformation induced plasticity steel alloy, is evaluated for different loading cases and strain rates. The performance is compared with HSLA-100, a lowalloy steel developed by the United States Navy and currently used in naval hulls. The response of these materials under uniaxial tension and shear was investigated to the point of fracture at isoth...

متن کامل

Quantitative analysis of thermo-mechanical behavior in 414 stainless steel using flow curves and processing maps

The hot deformation behavior of a typical martensitic stainless steel containing 2.1% Ni was investigated by means of the compression test in the strain rate range of 0.001-1 s-1 and temperature range of 950-1150 °C. The flow behavior of the steel was evaluated using the flow stress curves and flow softening map and by microstructural investigation. Taking into account of the strain effect on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011